Decompositions of a Higher-Order Tensor in Block Terms—Part III: Alternating Least Squares Algorithms
نویسندگان
چکیده
منابع مشابه
Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms
In this paper we derive alternating least squares algorithms for the computation of the block term decompositions introduced in Part II. We show that degeneracy can also occur for block term decompositions.
متن کاملTensor Decompositions, Alternating Least Squares and other Tales
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple “bottlenecks”, and on “swamps”. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the ELS enhancement in these algorithms is d...
متن کاملRandomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data
This paper introduces a randomized variation of the alternating least squares (ALS) algorithm for rank reduction of canonical tensor formats. The aim is to address the potential numerical ill-conditioning of least squares matrices at each ALS iteration. The proposed algorithm, dubbed randomized ALS, mitigates large condition numbers via projections onto random tensors, a technique inspired by w...
متن کاملDecompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness
In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-n ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker’s decomposition can b...
متن کاملDecompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices
In this paper we study a generalization of Kruskal’s permutation lemma to partitioned matrices. We define the k’-rank of partitioned matrices as a generalization of the k-rank of matrices. We derive a lower-bound on the k’-rank of Khatri–Rao products of partitioned matrices. We prove that Khatri–Rao products of partitioned matrices are generically full column rank.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2008
ISSN: 0895-4798,1095-7162
DOI: 10.1137/070690730